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This paper is concerned with the stability of the integrals of differential equations of

the form x = stkcrk A X (@gyeneyapnl) (s=1,...,n) (0.1}
k=1

where Qg are continuous periodic functions of # with a common basic period 277,

The functions X, appear as series expansions in the variables X1,.... Xy with periodic

coefficients with the same period 277,

Usually the problem of stability of periodic motions is considered as being different
from the problem of the stability of equilibrium or that of a steady-state motion, For
instance, this is the manner used in the works of Poincaré and Liapunov to analyze that
question,

Here, it is proved that except for some nonessentially singular cases , the problem on
the stability of periodic motions is always related to that of the stability of equilibrium,
Liapunov has proved that this proposition is valid for the case of linear systems, i, e,
X, (21, ..., xp;t) = 0, by transforming the system of linear differential equations with

periodic coefficients into a system with constant coefficients [1],

1, Let us consider the general case when in the system (0, 1) we have

S (... k,) K
ad - &
X3=12Xg()7 ‘Xs()::zcs n (t)lll...fnn
>2
(ke k) &y (k.k) &, (k) (Rro k) .
c, ~m (t) = 2 Cp T eiPt= 2)(1151, " cos pt - bep " sin pt)
D=0 p=t

Using Liapunov’'s transformation, we can always bring the system (0, 1) in a form for
which all the coefficents of the linear parts are constants [1].

If the characteristic equation of the system (0, 1) has 70 roots equal to one, ¢ pairs
of conjugate roots of modulus one ( of the form vy, == 2%} and P roots with
moduli smaller than one, then the determining equation of the transformed system has
™M roots equal to zero, ¢ pairs of pure imaginary roots (of the form £7A;) and P
roots with negative real parts, In that general case, the system of equations (0, 1) can
be represented in the form

*) This work was received when the author was still alive: he took an active part in
its preparation for printing, The reading of the proof pages during the printing process
was done by V, G, Veretennikov,

14



The stability of periodic motions 15

.7/5’ 2 Z Sxlk -1 Yolyr, - o lns S1a oo s S )
k-1
. (.1
3 = E DiaZi Zi(Y1s o o or tng S10 e o0 55 1)
i=1
(s=1,.,nyn=m-+2q0 /=1,...,p)
l.et us represent the functions YS and ZJ of the system (1, 1) by
o
Y, = Ys((’) (H1+ - oy Ynpp ) + 2‘ P (zy, ...z t) it . .y:"l —+
K=1 1
+ )fsl (!/1’ RIS ] Z/n,; 21y o o oy zp; t) (1.2)
0) S
0 ‘
Z;i=2Z;"(y1r - Yut) + KZI Qi* (21, .z )iy - .yfl:“ +
+ ZJ] (.’/l? A | yn,; Zlv = & =y Zp; t) (I{:klv‘}- e +' kn‘)

Y O=Ny® U1y s Ynis 1), Z; © Z AL Yngi t)

>2

lere PS * and QJ* are linear forms of the variables Zy.,..., & in Sections 1 and
2 the superscript asterisk * replaces the index Blveves .

Equation |Qix — 53 x V| = 0 has roots with zero real parts, and Equation

| 2y — 5] = 0

p

with negative real parts,
We shall assume, that the right-hand sides of the system (1, 1) satisfy the following
conditions ;
1) The forms £, () = 0 for K<V,
2) The linear forms
Pl ) =0 for ky + ook, <
3) The forms .V(k) for K<V have constant coeff1c1ents
If these conditions are satisfied for the system

7y

= X gt E Y @ ) (=toom) o (13)

and if a Liapunov or Chetaev function is found, such that the sign of the derivatives of
these functions is determined by forms of order not higher than the #th and does not
depend on the forms of higher order, then the corresponding functions for the complete
system are determined in the form

V=V - oY) T Vo (20 s 2p) (1.4)

where ) is the Liapunov or Chetaev function for the system (1.3 and Vs is deter-
mined from Equation

\‘ ol Szt P =M E L+ 20) (1.9)

= 0"

i=1

l.et us prove this assertion,
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Let Vi (Y1, eees Yn,) be a positive definite function, satisfying the system of equa-
tions (1, 3), and let its ]aerivative A ’ be negative definite, Let us assume that the
terms of order higher than // do not influence the sign of the derivative, We shall
choose a function /5 from (1, 5), considering the quantity # < 0,

On the basis of Equations (1, 1) when the conditions (1), (2) and (3) are satisfied, we
can represent the derivative of the function [ in the form

Vo= ‘71, (?”1, . ey yn‘) - M (Z{?' -i" PN "%' Zpg) “3"

n, on o
vy | (k N k
SR IS A U R AL CRRE Y AN B
s=1 % “k=N}1 K=N+1

ny ® 0
. BV > an k
“1*2 B‘?’!‘i“ }sl (f!h---y,’]nx; Ziy s ooy Zp;l) ‘i‘ Zaz‘[ E Zj( )(.?/11 -~-yyn(;i) ‘}‘
j=1

s=1 i k=N-}-1

oo
+ 200G 2 U Y Zia (s Y e 2 ﬁ)] (1.6)
K==L
(K=lct . 4 k,)

This expression can be given the form

Vs Vi (st + M (22 o 4 2% B 4 g®

[s.9]
=0 % . ke ky,
= K:ZN«H R¥ (20, . 2 ) o g

p P
@ ,, . .
Y = _21 EIZi-"jIJi;'(yl, e Un By e Bpyd) (K=l ... Lk,
i=1 )=

For sufficiently small values of }Y,, Z; the sign of the derivative 5/';{ is determined

by the sign of Expression M(zf +ees +2,) independently from = (Q). Expression
™ Joes not change the sign of V4, Thus the sign of I/ is determined by the sign
of Expression vV, ~ M (212 e+ zp-z) < 0

The function ¥ (Hiseeey Uniy Bgaeeos zp) (1. 4) is positive definite, Consequently,
the integrals of the system (1, 1) are asymptotically stable if its right-hand sides satisfy
the conditions (1) to (3) .

Let us now assume that the system (1, 3) is such that there corresponds to it a function
of Chetaev V; (y1,--y Un.)-

Then the domain /7" > 0 is enclosed inside the domain ’/i’ >0, and this property
of the function VI, is determined by forms, the order of which is smaller than, or
eynal to V', independently from the forms of higher order,

We shall take a Chetaev function, satisfying the system (1, 1), in the form

[l
()
=

Vo= V) 1seees Ynd + Ve (Graeens 23)

liere V3(21,.... 2,) is determined from Equation (1,5) for &/ > 0,

On the basis of Equations (1, 1) and when the conditions (1) to (3 are satisfied, the
derivative of the function I/ can be represented in the form (1.6) . Unlike in the pre-
vious case, the functions . ;3 donot have to be eqnal to zero for 1y = ...y, 7
=z, = ), since the function [ can include linear terms, Denoting

=z, = ...

the values of the function *’LiJ hy .LU(O) for values of Y, , Z; equal to zero, we
shall determine the number ¥ > 0 such that Expression
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» r
Uiy 2y =M @2+ ..+ 2.8 4+ 2 2 2i2,L,®

i=1 j =L
represent a positive definite quadratic form, Then

Vo=V (Y1 oo ) F U (21, 000, 2p) 20 2@

= }J Z 7;2; ,“' (Wis oo s Unp 2y ee o250
i=1 j=1

where L“( ) become equal to zero for ¥, = ...=Y,, = z; 7 ... = z, = 0. Itis
obvious that Expressmn 5®) does not change the sign of U(Zl seens p) for sufficiently
small Y., &y, and = Y does not change the sign of /; . Consequently, in the
domain V>0 , the function I’ represents a sign-definite function of all variables

Ys » &5 Since the function /3 <0, the domain V> 0 is enclosed inside the domain
V'>0. Thus, V/ is a Chetaev function for the system of equations (1, 1), Similarly

we can design functions [/ and W satisfying Chetaev's theorem for the system (1,1) [2].

2, We shall prove now that any systemn of the form (1, 1) can be transformed into a
new systemn, the right-hand side of which satisfy the conditions (1) to (3) . The prob-
lems of stability with respect to the variables of the system (1, 1) and the variables of
the transformed system will be equivalent,

Let us introduce the substitution

2 =0t 0i(Yn o o Yast) =L P 20) (2.1

where U, represent the & first terms of the series Uy which satisfy Equations
Ty

at + S‘ af/ {gsl./l +...+ s, ln, -+ Ys (ylv cea Yn M - ey u’P;t)] -

= Z‘, Piitti + Z5(Y1s - - oy Yy Uy -+ oy Uy E) (2.2)

In the general case the series U, diverge,

We shall consider two possible cases,

In the first case, the substitution of the variables 2, in the Expressions (2, 1) trans-
forms exactly into zero all forms Y, ") (yy,..., Yn,; t) corresponding to the values
% = N+ 1, no matter how large the number N is chosen,

This is possible only if Yy Wreeer Y Uarener Up; 1) = 0 (2.3)

where 1 ; are series satisfying the system (2,2) ., That case is essentially singular,
When investigating it, we shall consider the transformation

z;=10;+u(U1s - - s Ynyi 1) =1, ..., pim=m | 29)
This transformation is possible only when the series determined by Equations (2, 2)
converge , We shall prove the following,

Theorem 2,1 , If the system (1,1) is such thar ;
1° the relation |ggy — O4v| = O does not have any multiple roots, or if they

occur, to eacl: such root corresponds a number of solutions equal to its order of multi-
plicity :
2° there is no relation of the type
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2 myv,—x; = ik, i ) —1 G=1,...p)
$:=1 .
between the roots of Equations | pji — O;% | = 0 and | gy — 0,v + = 0 where &

is any integer including zero, and the 7, are positive integers satisfying the condition
My + eee 7y >1,

3° the functions Ys[yla-"a Y 21 (ylv'--v Ynis l)v--'v Zp (yl»"" Ynis l)v (] = 0.
Then there exists a unique system of holomorphic functions z; = 7, W1reees Yng 1)
periodic in ¢ which satisfy the system

9z, o 0z .
73';,‘ % Z‘i *a?;s‘ (gslyl —{‘ e '% gsn,yn. + Ys) = pjlzl + s + pjp:p “} ZJ
G=1,...,p)

and are equal to zero for Yy = ... = y,, = (.
Let us transform the system (1, 1) into canonic form

By = Ve 1+ B (Epy My 1), M =M+ Ha (E, My, 1) (2.4)
Ny =%+ i My HH (G, 8) (s, k=1, .. ani=1...p1=2...,0P)

We shall consider the system of functions n; = nj (&, ..., gm; t), satisfying the system
Ny

o, + > ‘;’g‘ VB, =t - Hi® (B, ., Eys ) @5)
+H1(‘1)(£], e gnl; Ny - - 'nn; t)_z anl E
s—l
m; . o
—a-ti+2 aa] v =%+ 05y + H{O Gy o By O F
—_— S
n 511
S G B M e Ty ) — D) B (=2
s=1 8
HO (.. 8, r)-——E Y RNOR I
Y6 o s, e,y ) = ) A Tg) (g g g Frg™ L T
(Fr -+ /\1 . ;2 P S kn. deng e )1p>2) (2.8)

Here the H(l)j (=1, .., p) are equal to zero for My = .. =1, = 0.
We shall write the solutions of the system (2, 5) in the form

=dlarEM. g P 2.7

where the a(]k""k"‘)(t) are periodic functions of Z of period 21T, subject to definition,
Let us note that as a result of the substitution of T, in Expression Zs the latter become
identically equatl to zero,

Substituting the values of 1), into the svsr.%m (2. 5) and identifying the coefficients
corresponding to the same powers in EFLE ’:", we get linear differential equations

for the determination of the coefficients a?‘""""m):

a’* o hFagt = Ag* o Py*
Sk Kag ¥ — s ok * * e € . gl .
@t Fhtat =i a; F o AR P (=200 p bid o ok =1 ,=2,5 )

ny

I:v
\_J
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where * stands for the superscript (ky, ..., k,)) and  Aj* = kyvy + oo 4k, v, — ;.

The terms P, y* represent polynomials of the coefficients A”‘l kpu-mp) (1) and of
the different powers of those @ * for which ki 4 ... + &, %l — L

Following the transformations of Liapunov, described in [1] (Sections 35 and 42), we
shall prove the convergence of the series (2, 7) ,

Let us determine functions @ ,* for all values of }fl vees, By which satisfy the con-
dition ky + ... 4- k, = I, considering that all the @ 4* for which kg -... + &, <l -1

are already known, in the form
t+2m

et . 29

i
e"hj.l t+2n -
(% .
= ) Gt PATERE =2
Let 5, bé the largest value of the quantity
1
[Evi -+ kv, — %]
for all the values of /g which satisfy the condition & - ... 4 k, 22, and let the

quantities 141 %,..., W* represent the largest values of the moduli of those Q1%... @y
for wh1ch ky 4 .. kn << ! — 1. Let us denote the largest values of the moduli AJT t)
by @ 4% and by p ’; tile largest values of the moduli of the expressions P * if in those
the values of A w1y are replaced by the largest values of the1r moduli and
if @y* is replaced by U *for ky ... +k, <<I—1.

Expressions (2, 9] yield the largest values of the moduli of the @ ;* for which /; +...

ves +h’n =4

w0y ~B1(an +o*),  uF=DB(s5_ 2 e (G=2,...,p) (2.10)
It is obvious that
R (ky-p ek =0 j=1,..., p) (2.11)

Ny
Giving to £ the values 2, 3,,,,, we determine the largest values of the moduli of
all the coefficients entering the series (2, 7).
Now let us consider the system of equations

=Bl G LB ) PV G B G 8] 2.12)

t=B;l54 18+ F-‘°>(al, o B )PV GG S )] (=20 )
where F;® (&, .y E0 )i F3Y Bp ooy Bpi Goven Ep) =1, ..., p) are obtained from
Hj® Gy, ., By z) and H; (B1 o+ B Guo s §pi®) by substituting for A4 y*(¢) and
Ak ey ‘(t) the largest values of their moduli ,
We shall represent the solution of those equations in the form of the series

Cj — 2 uj"E,Lk‘ . Enlkn' G=1 ...p. (k14 + km >2) (2:13)

which are absolutely convergent, at least for sufficiently small values of l s l .
It is simple to show that the coefficients Uy are determined from Formulas (2, 10),
On the basis of the conditions (2,11) it can be asserted that the series (2, 7) are abso~
lutely convergent, at least, for sufficiently small values of Es ’ . Passing to the
original variables 1, &; , we get the expressions 3j = z; {y, ... . y.: ) in the form
of absolutely convergent series, at least, for sufficiently small values of lys l .
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Going back to the systemn of equations (2, 2), it can be affirmed that the series
uj (Yiseoes Yn &) are absolutely convergent when the conditions of the proved theorem
are met,

The system (1,1), after the transformation

ZJ' = §J+ u;i (yh"" ym; l)
(2.14)

takes the form

ny p
ys‘ = lElgalcyk + _21 stl (yh- vy Yng t) Cj + Ysl (qu s Yng Cls'- vy Cp;t)
= i=

bl D
;1'- = "z_} PpCi + Z Qj'il (ylv' « o Yngs t) Ci + Zjl (yla v ooy Yoy clv LIS Cp; t)

1 .
where £ sy and Q” are holomorph1c functions of Yseee, Yn which are equal
tozerofor Y3 = ... = Y,, = 0 and Y and ZJ do not contaih linear terms in
Cl ses 0y g p*
Let us transform into the canonic form the first group of equations of the system (2, 14)
by means of a linear transformation with constant real coefficients, We get

P
§,' =— A"'Ij + ng st (glv N1y r}nt) gi + &, &n M Ty L t)

P
1),' = x,g, -+ 521 S;j (Eh My Tps t) ;j + Hu (gh s T ;h t) (2‘15)

»

Rkj (§1, Ny Tpe t) Ci + ‘qk (E;h Niy Ty ‘giv t)

=1
i r
i = i§1 pﬁc‘l + {§1 Qi‘i (Eh Nes Ty t) Ci + Zj (gls Ny Ty Ch t)

(s,1==1,...,q¢ k,p=1,....,m; hi=1,...,p)
Now let us write
P

r r
Ea = Ts + Zl Cjunj' :Tls =Y, + JEI ij.j, 'y = Px -+ jglgiwki (216)
j= o =

where Xg, [/g , Py are new variables, and L4y, Usy, Wy are functions of &,
Ny, Tw and ¢, satisfying Equations

Ou s 3u 3 i

—&t_J - IZ ( ¢, A'ml Ak ) = — g UsiPij — A sVsj + p!j_ izl uSiQii

0v; 5 :

_e# —_— 2 ( aa; }\.17]1 IEI) = — E Uﬂpij + ;"ausj + Ssj_ E vsiQ'li
i=l i=1

P P
dwy; wy; Ow, ;
_,3"[z “Z ( 65: Kzﬂz*—ﬁlhﬁz) = —'Z WriDyj ‘f‘Bkj—EwmQH
I=1i ie=1 =1

s=1,...,¢k=1,...,m;j=1,...,p)
This system of equations satisfies all the conditions of the theorem which has just been

proved , Consequently, the functions 2,;, ug, w,; are determined in the form of

absolutely convergent series with periodic coefficients, After the transformations (2, 16),
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the system of equations (2, 15) takes the form
xs‘ = —}"sys + Xs (Ilo Yis Py Ci- t), ys‘ = 7\'s‘rs -+ Ys (Zl, Uiy Pusy i t)

p
Px = Px (1, Y1, Ppr Gin £)s L = '21 Pl + Z (& pus G ) (2.17)

where X,, ¥, B, . Z " are equal to zero for ; =... = €, = 0, and furthermore
where the functions Xs . Ys and Pk do not include linear terms in the variables

-
gl reN ey B p*
Let us take a Liapunov function corresponding to the system (2, 17) in the form

q m

V=2 @ 4o+ Z o+ WG b

where W is a positive definite quadratic form which satisfies Equation
6§ (le‘zl o F il = — (G2 50

The derivanve V can be represented in the form

'f/'.__.-—_zgz + 2 2 \}ugz{:?

=1 i=1 j=
where |y, are equal to zero for z; = y; = oy = {; = 0. Consequently, the

unperturbed motion is stable ,
Let us consider now the second possible case, which occurs when we have
Yo oottty ooy Upp ) = DY 0™ (g1, oo o gi )£ 0
as a result of the substitution of the variables Z; on the basis of Formulas (2, 1),

Let us assume that the lowest of the forms Y_Qf‘), which is not equal to zero, has an
order A=WV, 1 A =N, we can proceed in the following manner, Take the func-
tions U, equal to the sum of the /+ A first terms of the series determining
U; (Y1s+++» Ynys 1), taking for A any arbitrary large number , Then the lowest form
Ysik), ‘which has the order of #, remains without changes and the lowest form Zﬂm)
has the order ¥+ A + 1, Consequently, in the second case, we can always consider'
the lowest form  Z,,” as being lower than the form Y, by any arbitrary large
number A,

Let us show how the system (1,1} is transformed into a new one for which the condi-
tion (2) is satisfied , We shall assume that in the system (1, 1) all the g, and D1
are equal to zero with the exception of

811 =V1i, - .+, uny = Vi Pir = %1, .+ oy Ppp = %p
821 = 01y« « «s Enmy-1 == G, P2 = d1, + - oy Ppp-17=0p1

We can always bring the system (1, 1) into such a form by means of linear substitu-
tions , Let us introduce the change of variables (2.18)

Pe="Ng+ 3 S *,/’1" R -’/::" St ok, KN s=1,, )

Here the U * are linear forms of Zy...., &, having periodic coefficients and
satisfying the reiations
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P
Au® u.* )
S+ 2 7z, (% diazia) = (2.19)
=

= [hyve b e by — 1) Vg o A FongVn] 1g* A Gty

— (k2+1)clu‘{krl Byt k) L — (kanLi)cm—]_u'; ki ky -1 hp 1) _;., ps'* 4 1‘;5*

The quantities F* (k; -+ ... -+ ku, = 8) are polynomials of those &* for which
by + ... -k k,, <6 —1. For =1 all the FE*=0,

These equations allow the determination of W * as linear forms of 27 ,..., 2, having
continuous periodic coefficients of period 2TT,

The functions u* (2y,..., 2Z,; ) can have complex coefficients, which appeared
as a result of the linear transformation transforming the coefficients @y, and Dy, into
zero, If we perform the inverse transformation, then for Expressions

ug* yl“' . ‘yu.k"'
we get real values, As a result of the transformations (2, 1) and (2, 18) the system (1, 1)
takes the form

) N 0
o= 2 gams+ 2 Ya® (i) F D Ya® (e amait) +
k=1 K22 k=N-+1

oo

+ B Pa G- L M B i G B )
K=N-+1

20

P o}
=Y+ 2 Za®™ oM ) +HEi (- Mei b - B 1)
i=1 s N--1

(K Fed Ii?l *{- I —l— k"l) (2-20)

The transformations of the system (0, 1) into the form (2, 20) when the &g, are con-
stant, and the A, do not depend explicitly on time, were presented by the author in
[3]. For the system (2, 20) to satisfy also the condition (3) it is necessary to transform
it to the form in which the functions which play the role of Y\ (k < N), have con-
stant coefficients ,

It is sufficient to show the possibility of such a transformation for the "shortened’system

n N (2.21)
. 2 , :‘1 ) <
Ns = Fe=1 sxlx T k>2yslfk) M1y - - 5 M 1)y Ysl(k) = Z! 4% (t) nlk( e n:m

3, Letus assume at first that the characteristic equation of the system (2, 21) has 72
roots equal to zero to which there correspond 7 groups of solutions and g pairs of pure
imaginary roots £ 7 A, satisfying the condition

7
ngﬁ,s#ﬁ' for 2<2$m3l<}v 3.1

8==3 =1
where the 71, and £ are integers, including zero,
In this case the system (2, 21) can be transformed into the form

.’.C.. = — }\-,ys -+ X. (x‘h Yi E t)a ys. = A7y -t Y, (zi, M3, grv t)

=8y b t)  Gi=he it (3.2)
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Assuming  Z, == T, - Iy, 25 = T3 -~ 1Y, We get
zl. = ixlzs 'l— ZB (z‘i7 zi’ §T1 t): Es. = i’-si; _%' 7,:5 (:I~ Siv grv t)
8, =P;(z;, %, 8., 1) (s, i=14,..,qf5r=1....m (3.3)
Here N N
a > 7 7
Zb‘ o= Z ZS ) (ziv 24y Erv ”v Zs = 2 Zs”) (Z{, Ziv E,,, I)
>2 >2 )

N
pj = Z p./(” (2iy Ziy By 1)

=9
and  Z,®, Z,D and P, are forms of the £th order in 2y, 2y and §., which
can be represented in the form

7 (I) ZA * (t) Zlkl L f]kq?‘lm, e quqglal .o E\mam
- k b
20 =A@z .. 5 ez MY L (3.4)

- _ 5 :
PO DB A ) sk g B ES LBy, AF () - AZ (A 20)
Here and further on in this Section, the superscript * replaces the index (k;... Kk m;...

eee mgby...8,).
Let us rewrite the system (3, 3) using variables §, gs and T, , setting

2y == gs -+ Uy (Z.,-, iy Jy t)v Zg = Cs -} “a (ziv i1 gr» t)v Gy’ = 1; - K (ziy Zi, &rv [)
and considering U, , s, 0 g as being periodic functions of ¢ subject to definition .
We shall represent these functions in the form

s 2 u )z zqkq'z'{“' ___2(]"”,,5]8,' .. Efnsvrt (s== toewmf=1,...,m)
vy = Nui* () oL ozheE L ey L e
The transformed system takes the form
C = ik, - Z Za", T —ing 1 S‘ z20, . i HO (3.5)
The functions Z and H j(l) can be represemed as
Za" = DaF @) k.. Gl L Lt s=1,...0) (3.6)

A = S 8. gq*azlmn A
The coefficients Q3*(T) and D,*(%) for

By 4o kg my 4 b my b8 . £, =
have the form (3-7)

* —m)h+ . ks—m— DA 4.+

ot ==
+ (kg —mq) Mgl u* + A% (1) + F* (w0, @, 0., v,0, t)

b* == —

j . —ilr—m)M+ . Fks—m) A ...
(kg =) hal 0% + By (1) + O* (10, w,?, 0,0, 1)
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. l iy =
where the 7, and @J‘* are known functions of ¢ and those us" ), v ), u,(), for

which £<%~1, TFor =2 allthe 7,* and ¢,* are identically equal to zero .
The coefficients cfs* are determined by analogous relations ,

From (3, 7) there follows that for different values of the functions ©g* L* and Dy
we get different values of the coefficients @g”, @y and bf . We shall determine U, *
Ug* and Uy* insuch a way that @;*, CITS * and b,* are equal to zero or to constant

quantities.
Let us assume that all the functions U4 and U,” for which
k1++kq+m14+mq+61+ —"6m=k—1

are determined from the conditions @4z*= 0, bd’ =0, or @;*= const, J” = const ,
We shall determine U;* and U,* for
by + .t kg +m o Emg 8+ F 8=k
Let us consider the set of the numbers %, and 7, which satisfy the condition
d=(by—m)hi+...4 (y—me— DA+ ...+ (kg —mg)Ag=5=0
(k1+'--+kq+ml+-~' +mq+61+ e =0 =k)
It is evident that for such values of %, and 774 we can determine the functions U *

for any arbitrary value of @;*, We shall find these functions for the conditions @,*= 0,
Let us note that on the basis of (3, 1), the equality & = 0 is possible only for

ky =my,o, by =my +1,..., k, = m, (3.8)
We shall determine the coefficients @ * corresponding to the index (k... k...
veskyky kg — 1. kdy... 8y), by the relations
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u
Then the periodic functions U;* having the same index are determined from Equations
*
i"L_ =—a 4+ A (v =1 ) (39)

dt
Let us determine the functions U, in the following manner, Let us seek the periodic
functions U,* with the condition by*=0 for the numbers %, and 7, satisfying the
condition

dy=(ky—m)hy+ ...+ ks —m)hs+ ... + (bg—myg) hg=+0
(o4 . kgt mat .m0 = k)
Noting that the equality d; = o is possible only for
by = my,..., kg = my (3.10)
We shall determine the bJ* corresponding to the index (ky...kghy...Kgy ... 8),
by Equations 2%
b= o

and the periodic functions U ] from Equations

do* Dty - )

Consequently we can assert that in Expressions (3,6) the forms Z,(® will contain
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contain only those terms for which the powers of 4, and 7 satisfy the condition (3, 8),
and the forms [/ will retain only those powers which satisfy the condition (3.10) ,
Assigning to the term 4 the values 2, 3, ..., N , we shall determine all the i *
and D" for which Ay i ..ol chomy o ey O B s AL
As a result of the transformation the systemn of equations (3,5) takes on the form

Lo = iME L, ha a (;1;1)“I s (Criiq).k'l ATRL 'nms'" i Zo(‘\..l) (& g:‘ N £)

- = = Al « Tk « \ R 3 o (N1 -
;s i i}“s;s 'Jf' Q l (l\* (FICI)] e (;IJCIJ) 4 nlsl- e Ny ™ i'Ah' ‘ ) (;iv Sir Wi t)
. &\l v AN b (V1 ooy R
W, = Ebl* (Cl?;l)J e ((:']gq) 4 rll81 | PP + 1[] ’ (giw giv N t) ("‘1)
(s, i, g o e 22 2y O e O K NY)

2IN+1) ZN+D (N1 . .
where ZVYZL and H.," ' do not contain terms of order lower than ( [/ + 1),

Investigating the canonic systems in the case of irrational A, and assuming 72 =0,
Birkhof [4] has obtained an analogous system , Assuming

« 10 .1
Cy = rye's, R A
we get

N\ 2k,

. Al
re =rg X ok (N+1)

. ;'112];1171151 .. 'rlmam + 1?5
e ] L I W N G R B
. O oL k -
N, = Z‘bj*rllh‘ L. rq2 (1n1§t. .. nmsm -+ 1[}(,"4 1)
If the question of stability is solved by the terms of the /th order independently of

the terms of higher order, the problem reduces to the investigation of a system of equa-
tions of the (7 +@ ) order of the form

rs. == rszds*h“‘ LR rq2kqnlsl- b nmsm’ 'r]]'. = zbj*rl?'k' s r’lgkqnls" . T]msm
E<2Ut o4 2k 404+ I KN (3.13)

On the basis of what has been presented, there follows that the investigation of the
system of equations (0. 1) satisfying the condition (3, 1) and the characteristic equation
of which has D roots of moduli smaller than unity, 7 roots equal to unity and 2¢
roots of moduli equal to unity (roots of the form v, = e**™*s),
the investigation of the integrals of a system of equations with constant coefficients
characterized by (/72 +g ) zero roots with (7 +q ) groups of solutions ,

can be reduced to

4, Before we pass to the general case, let us consider the system (2, 21) assuming
that its characteristic equation has, at least, one pair of pure imaginary roots 7 A
of multiplicity 7*, Then, by means of a linear substitution with constant real coeffi-

cients, we can transform this system into the form
n—2r

Ns = 1§1 b + Hs (Miy Ty Yoo )
Z = — My1+ X1 (M, 2y, Yoo B), i = Mz + Yi(mi 20, y0, ) (4.1)
xj' = - 7~1?/j + 6j—1Tj-1 + X] (711', Ty, Yy, t)
Yi =Mzi+ 61y ia+ Yi(Miy 2vy Yoy 1)

(s,i=1, .., m—2rj=2..,rv=1,...,r)
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where X;, }/; are linear terms in 7, (S = 1,,,., /¢1). Equation lbsk-— Ogp v l =0
has /4 roots equal to zero and 2(Q —7°) pure imaginary roots ,

Let us notice that all the quantities GJ- 1, if different from zero, can be considered
as being equal to any arbitrary number, We shall consider them equal to A; , Assum-

ing x, = Eycos Mt 4Gy sin Mgty yy, = &y sin At — Ly cos Ay ¢
x; = §jcosht + §jsinkZ + &y cos A2 + Ly sin Ayt (4.2)
y; = &; sin Ayt — §j coshyl + &;q sinkyt — £ cos Aqp¢

we have ny—2r

Ny = kgl bsiie -+ H oy (Wi &os Gon )

El' = E'1 (’fh, E,v, gv: t)v gl' = Zl (ni? EV’ EV’ t) (4‘3)
g}- = A'lgj-'l + E‘J (ni’ Evi L 1), Cj- = ;"lgl—l + ZJ' (ni’ Ev) Ev, t)
(s,i=1,...m—2r, j=2,..,rnv=1...71)

If a few groups of solutions correspond to each multiple root +Z Ay , then for each
such group the transformations described by Formulas (4, 2) are carried out completely
analogously ,

Let us note that the characteristic equation of the system (4, 9 hasa?” + 27 roots equal
to zero and 2 (g —7°) pure imaginary roots ,

If one group of solutions corresponds to the pure imaginary roots * U\l , i, e, all the
Oy-1 #0 , then two groups of solutions will correspond to the complementary zero
roots, If, however, X group of solutions will correspond to those roots, then 27" zero
roots will have 2% groups of solutions ,

Let us notice also that when A is equal to an integer, the functions Hy1, =4, £y
are periodic functions of ¢ with a period 21T,

If M = 0o/B (&,, B, areintegers), then by substituting ¢ = B, T, we give the
system a form for which Ay is equal to an integer,

In the case of irrational A, , the problem is somewhat more complicated , The
expressions Ay, 2 B z j » are not periodic functions of ¢ anymore . Let us repre~
sent one of them in the form

Hog=XH @m0 8™ 5™ L L (4.4)
P=m—2ris=1,..,p), C<n+.-.+1pt+tm+t.. . +m+bt.. +865N)
where () replaces the index (Vp-+-Vpiy... m:O7 ... 8;).

It is easy to find that the functions A © ?) are linear expressions of the coefficients
AFe¥n)d (1) appearing in the system (2,21) , multiplied by sin€;A;% and cos €.
The numbers €, appearing in forms of the £ th order can take values from 1 to £,

There follows that the functions A (O)(“b ) for which

YWt oty tmygt A+ met 846 =L
can be represented in the form

H (1) = 2 447 (t) eient (4.5)

where Asl(o)(t ) 3re periodic functions of ¢ having a period 2TT, When Aj is
irrational, the Hs(o (T ) are almost periodic functions of ¢,
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The coefficients of the expansions of Ej and Z’J appearing in the system (4, 3) have
a similar structure ,

A similar transformation can be made for any pair of simple or multiple pure imagi-
nary roots + ?;)\5 . Consequently, in the general case the system (2, 1) can always bs
transformed into a new system, the characteristic equation of which has all its roots
equal to zero, This system can be represented in the form

Il‘ == —Yl ('rl! ey Iy t). ;l:s' = Te1%s1 + S (Il‘ <o o0 Ing t)
(s-=2, .. =) (4.6}

where v
. y ) NV s Ky o ¥
X = }JXSU)(xlv---vIn;[)* Xs "—ZJB’ U)Il ool
i>2
(ky v v m iy =), (=7 1,..., 1)
The symbol * stands for the index (%1,.4.. %),
The function "5,* (%) have the following structure :

£

The symbol ** stands for the index (€&-.. &.). The quantity K determines the num-
ber of irrational pure imaginary roots , The summation with respect to % extends to
all the positive integers %, which satisfy the equality &1 +... + %y = £, and the
summation with respect to €, to all the positive and negative numbers €4 (J=1,ee i)
which satisfy the condition 2 e, [=4.

The functions As«+ are representative linear forms with constant complex coeffici-
ents of A,*(& ) : they are periodic in ¢ with a period 2TT,

The functions 5;*(t) are real, almost periodic functions of ¢ for real values of .

The new variables X1,..., Xy are real functions of the real variable ¢.

We should point out, that the problem of stabjlity with respect to the variables 7]
of the original system (2, 21) and X; are equivalent,

B (t) = ) }2 Aea () €XP i (Bhy 4 Ehy oo+ 8uh) € (4.7)

5, Letus prove now that for cases which are not essentially singular, we can always
reduce the problem of the stability of periodic oscillations, characterized by the system
(2. 21) to the problem of the stability of equilibrium,

Let us consider the system (<4, 6) assuming that somehow it was possible to transform it
into a form for which all the forms X,g“) are independent of time ¢ for £ < A—1,

We shall transform this system, writing

Q : X
r, =Yg Zus* ) 2P . oz (k1. fFhy=k s=1,...,n) f51)
where
O N * .
WK (1) = D) X lhes (£) €Xp i (kg . . . - £4h,) ¢ (5.2)
e]. ks
The indices * and ** have the same meaning as in Formula (4, 7} ., From (5, 1) we
get . Y . k
Ts == g1 .\_I 1‘;1’- (g) U1t " (ky -+ . ke k) (53)
The functions U,* are equal to g * for %1 + .., + %5, = K4 : for the values
K| +aes + 4y >4 =4 these functions are polynomials in those U * for which
Kl tues ~ 4y <4-1,
Taking (4, 6) into consideration, we get from (5, 1) and (5, 3)
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o0 o0
. !
= Y i)y U= Yeatat 0 Y e i )
>3 122
(s=2,...,m1=23,...) (5.4)
In this system when (<{ Ak —1 (9 = 1,..., n) the forms Y. (y1,- -y Yn; {) are
equal to X.” (zgyees x,) where X, isreplaced by Y, , and the forms Y. (y,,..
Yu; 1) become

Yyt ) = 2005 () b oysn iy by ke )
The functions Q@4* (% ) are determined by the equalities (0.0
o (1)« T (e Uy g
— o (ke 'i)Tn—Ws”[' Tt Uy g B (9.6)

CRI PO TP S S )
Different values are obtained from the tunctions Gg* (%) by giving different values
to the functiohs W, * (% ). The functions 4" (%) are determined so that the @;™*(?)
become equal to zero or to constants ,
It is evident that the functions u . (L) can be determined from Equations

e e b M wl B B Ll ()
where the " are penodic functions of ¢, with a period 27T, which are linear forms
of the alread; found ulii TPyt

If the numbers €;,..., &, aresuch that &; Ay -|- ... + E‘\J»“ = (), then the perio-
dic function u* _ (T ) can be determined by assuming that @, = 0.

If, however, Sfor sore of the numbers €;,..., & the relanon 817» + o= 0
is satisfied, then the a «e, . . comesponding to those values of €p,.-t,s 89, must be
determined from the equahnes

(5.8)
as: €, = ’l"' \' (]’) s* £ -+ L‘* )dt (.\’ B | wy ey - -k, = lc)
1y a7 . SEp By T $€1.. 8, P L e LT Y

Then Equations (5, 7).determine u. ce,..ep. -(f), in the form of periodic functions of
pertod 27T, Consequently, as a result of the transformatton (5.1), for the values of
the functians- ;" found in the system of equauons (5.4), all the forms Y, ®) have
constant coeff1c1ents, It is evident that the structure of the forms Y, @ for 4 > Kk is
the previousg one, i.e, (4 .

It is also evident, that the problems of stability with respect to the variables
X1.e0e, Xy and Yi1,..., Yn are equivalent,

By giving to the number X the values 2, 3, ..., //, we transform the system (4, 6)
into a new system of the form

- (e8]

o 1 o . PR . 1 oy, .
Iy ,\_4(11 AL S L VAN C-TT- e
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oc
2y = Ye18s-1+ 2 a*zy .. -an"_—]- }.‘4 Zs(l’ (1)« v oy Zn3 1) (.9)
1==N-1
(#=2...,0 2<k 4 ...+ k,<N)

The points exposed in Sections 3 to 5 allow us to formulate the following theorem,
Theorem 5,1 , If the system of equations (0, 1) is such, that its characteristic
equation has 7 roots equal to unity, ¢ pairs of roots of moduli equal to unity, and D
roots with moduli smaller than unity, the problem of the stability of periodic motions,
characterized by that system, for cases not essentially singular, can always be reduced

to the problem of the stability of an equilibrium,

If the roots v, = eﬁ"il-‘" the moduli of which are equal to unity, satisfy the condi-
tion (3.1), then the problem of the stability of equilibrium, to the investigation of
which was reduced the problem of the stability of periodic oscillations, is characterized
by (/7 +q ) roots equal to zero,

8 , As an example, let us consider the problem of stability when the characteristic
equation has two roots of moduli equal to unity, one root equal to unity and 7 roots
with moduli smaller than unity ,

This problem reduces to the investigation of a system of equations of the form

z = —~7vy+X(I,y, 5 T 1), ¥ = Az 4+ Y (2, y, 2, 74,0) (s=1,...,n)
n
=2z Yz, 2 1), T = 2 Patn + X (2, 4, 2, 7, ) 6.1)
k=1
Let us transform the system (6, 1) by writing
T, = Ys 4 Vs (2, Y, %, 1) (s=1,...,n (6.2)

considering Ug as being polynomials, representing the // first terms of the series U ,
satisfying the system of equations

du, du, . ou,
S T M XE Y L )+ g e Y (@ v s, 9]+ (6.9)
ou . z .
+ L Z Yz uy 1) = D) Patyt X @Y 5y ) (s h=1,...,n)
k=1
If

(6.4)
X [z, 9, 2 Ug (z,y,2 t)ht]=Y [x, ¥, z, up (2,9, 2, 1), t] = 2 [I‘, Yo 2y up(z, y,2,1),t] =0
then the system (6, 3) satisfies all the conditions of the theorem proven in Section 2 .
Consequently, the series Uy (%, Y/, 2, ) are absolutely convergent, at least, for
sufficiently small values of ?x ‘ Yir. g,' .

Then as the Tesult'of the substitution

Ty =ys + ug(x, Py ) (s=1, .., Ay

we have
= —hy + Xy (z. y, 2y, 1), ¥ =4z + Y, (x, v, 3, Yy 1)
n
2 =Z1(x, Y, 2,y t), Y, = E Py + Y (% 9, 2, 4y 1) (s=1,...,n) (6.5

k=1
The functions Ay, Yy, 21, Y1 are identically equal to zero for ;3 +,..=Y, = 0,
Basing ourselves on the conclusions of Section 2, we can assert that the unperturbed
motion is stable ,
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Note 6,1 , The system (6, 5) has the particular solution
£ 0 €03 A (L = 1), ¥ = oSinh (I — f), 2= 0, Yy = o = gy == )
Consequently, the system (6, 1) has an almost periodic solution of the form

ry = u, [eg cosh (¢ = to), oy sinh (8 — ty), ¢y, t]

2= COSA(E— L), y=o¢sinA{t— 1), =0 {6.5)
which exists, at least, for sufficiently small values of o, ’ and 1@2! .

7, Let us assume now that the identities (6, 4) do not hold, Then in the case of an
irrational A we can transform the system (6, 1) into_the form

ro=r ROV (r2 2y e LR (r2, 1)) 4 D (r,z,8, 1) --R(r, 2,0, Y )

T 2T ) e 2 ) 2V e 28,0 2 5, 8, )
?./»‘ = :’_: &”5;;7”;';_ )"S(N*l' ("1 = 0. [) ‘;‘ sz (ru z, 61 ?{ka ")

w0 A
Py R Fir,z 0, Yo 1) (7.4

where 4V, 20 are forms of £th order in 2, z (1 << N), RN"D, V31 (VAL g
the ensemble of the terms of order higher than the //th , and 7, 2, ¥, become equal
10 zero for /1 = ... = Ya = 0. The functions Z and £ either do not have linear
terms in /1,444, Yn or contain them in products with PFE (R b By > V).

If the question of stability with respect to the variables 77, & is solved by means of
forms R and z with the condition £ S/, and independently from the forms of
higher order, then when investigating the stability of the integrals of the system (7, 1)
it is sufficient to consider the second order system
P (R 2y s RO (2 g, 2 =72 sy e n 2 gy (79)

This statement is proved in [3], Assuming 7"2 = [0 we have
p =2 [R™ (p, )+ - = RV (p, 7)), =2 (p, 2) ke 2™ (o, 2) (1)

When investigating the stability we must consider the variable 0 as being a positive

quantity , Such a system is considered in [6] where a very simple case is investigated
in which the system (7,2} has the form

p = R (p, 5y 4 R (p, z) 4-ene, 2 =2, 5) 2 (o, gy e (T4)
and the question of the stability is solved by forms of the 7 th order , independently
from the forms of higher order , The results of these investigations are also given in
[6] and [3].

The problem of the stability of the integrals of the system (7, 4) for the solution of
which it is irdispensable to consider forms of order higher than the 7th , is considered
in [7].

In the general case, the system of equations (7, 3) can be represented in the form

A

/" . 9y 20T TR TP S SR
1. ll“"'l)pz - PLLEAPS -+ ! a(”k-‘p"’ 1 3'\-> R

1(2,0) a(l.l): T a(.’].(ﬂp; !

pr=p(atp

Eyrho==t

:\(
g {}(l'mp R ])(34019g 4 b“‘”{): -4 P02 e 'S"ﬂ Ij.’.’.‘u’[g)pkg e A

Hythae =-3

"-\J
e
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If 4" =0 in (7, 5) then the problem of the stability of system (7, 1) reduces to the
problem of two roots equal to zero with one group of solutions ,

In the case b9 = 0 the system (7, 5) has two zero roots with two groups of solutions,

In both cases, it is indispensable to consider the variable P as being positive ,

The investigation of the system (7, 5) presents some complications only in the case in
which all the coefficients b“-¥(k= 1, ..., N) become equal to zero for any arbitrary
large number //, In that case, the terms of order higher than the /th op the right-hand
side of the second equation of the system (7, 5) do not have to become equal to zero for
p=0,

8, Let us consider this case , Going back to the system (6, 1), we transform it by

using c=E4u(zt)hy y=1n+ (1) z3=ys+ us(z 1) (s=1,..,n)

which yields

E=—2n+EE Nz 802 4, it NW=2+HEM 2z u v u,y,!)
n
z. = Z* (Ev ‘]7 Zy lt, 27: u}\"’ .7/}‘-7 t)) ?Is' = 2 pskyk —{" Ye (E.‘l nv Z, ll, vy "’k’ ykl 1) (8’1)
k=1
(s, k=1, ..., n)

The terms of order higher than the first, and not depending on .M Y1y eees Un
on the right-hand sides of that system appears in the form

- ou
20,0, 2,4, 2,4,,0,0,..,0,8) = —75-Z(u, v, 7, u, ) — Ao+ X (u, v, 2, uk,z)_-%"ti
H(©,0z uv,u,0 01)——Qz‘(u z t A Y o
y Vs &y 1Y By My e Y = 61 y U, 1uk1 )+ u+ (u, vuz’uk,!)—_a?
Z*%(0,0, z, u, v, Ups 0,...,0,1 =Z(u,v,z, U, 1) (8.2)
0 Buu
Ys( , 0,2z, u, 2, Uy, 0,...,0 8=~ 52 Z(u, v, z, uk,t)—{—
, - ou
- Z Pyl T Y, (4, 0,2, up, t) — at‘

k=1
The coefficients 5©* (r = 2, ..., =) become equal to zero only when

Z(uy vy 3y Uyy een y U3 1) = Z%{0,0, 2z, u, v, ug, 0, ... , 0, £) = 0.
Let us determine the values of the functions %, U, U; from (8,2), under the condi-
tion
Z(uy vy 2 upy ) =E(0,0, 2z, u, v, u, 0, ..., 0, 8) = H (0, 0, z, u, v, Ugy 0,000, 0, 1) =
=Y.(0,0, 2z u, v u,0 ..,01=0
then the right-hand sides of the system (8, 1) become identically equal to zero if we set

E=n=un=..=y=0

If the system (8, 1) is transformed into the form (7, 1), the forms z®  become zero
when 7* = 0 for any £, no matter how large £ is chosen, The second order system
(7. 4) corresponding to the system(8,1) is such that the straight line 0 =0 is a singular
line for the forms R® and Z” of any arbitrary high order, The investigation of these
systems is complicated only when the forms R and 2z determine stable motions
for any arbitrary large £ . It is obvious that the stability can be only of a nonasympto-
tic nature,
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If,however, it is found that the unperturbed motion is unstable on the account of the
forms of the Zth order (£ < /), then the integrals of the system (8, 1) are also unstable,
Let us point out that if A is rational, then the stability problem, represented by the
system of equations (6, 1) according to the method exposed in Section 4 , is reduceable

to the analysis of three equations having three roots and three groups of solutions ,

If, however, the right-hand sides of the system (6, 1) do not depend on time, then the
system (6, 1) takes the form (7, 1) both for irrational and rational A , the terms of the
order higher than the #th on the right-hand side of that system do not depend on ¢,

In that case the solution (G, ¢) is periodic with a period 2TT/A,

Note 8,1 ., We take advantage of this opportunity to point out that the method by
which the investigation of the stability of a system of the (72 + 2)nd order is reduced to
that of a second order system having the same critical variables, was first used in 1935
in the solution of Liapunov's problem (for two zero roots with one group of solutions) in
[8]. The possibility of such a reduction was proved in that paper ,

In 1936, in [9], this reduction method was applied to the solution of the stability prob-
lem in the case of two zero roots with two groups of solutions, In that paper it is proved
that the stability and instability of the complete (72 + 2)nd order system, follows from
the investigation of the shortened second order system,

In the 1939 paper [3], the reduction of systems of the (7 + 2q + P)th order is considered
for steady state and periodic motions in nonessentially singular cases, The general state-
ment concerning their reduction, and their investigation by means of systems of the
(7t + 2@ )th order is proved, In that work, the system of equations takes a form such
that the search for Liapinov or Chetaev functions for the complete system reduces to the
search for such functions for the shortened system, Since Liapunov's and Chetaev's
theorems are reversible, the formulated statement is equivalent to the following, If the
shortened system is asymptotically stable or unstabble, which follows from the consider-
ation of the V' first forms of the shortened system, independently from the forms of
higher order, then, the complete system is correspondingly asymptotically stable or un-
stable,

The "reduction principle” refers here to the transformation of the given system into
a form for which the functions of Liapunov ot Chetaev are constructed on the basis of the
¥ first forms of the shortened system, and Liapunov and Chetaev functions for the com-
plete system have the form

V=V, ..roym) +Valzy, .o y2p)

where I/; is the Liapunov or Chetaev function corresponding to the shortened system,
and VE is a quadratic form determined from Equation

P P
j=1 i=1

Let us note that, when investigating critical cases, Liapunov always sought functions
/', corresponding to the complete system, As a consequence of that, the ensemple of
the terms containing .2y ,..., &, linearly was transformed into zero by an appropriate
choice of the functions [/ and not by a transformation of the equations . In the simplest
case of one zero root and a pair of pure imaginary roots, the reduction principle does
not have a tangible superiority over the method used by Liapunov ., However, in the

case of two zero roots with one group of solutions, the complications were such that
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Liapunov was forced to ignore the search for [/ functions and seek a solution to the
problem in the form of series [10],

in [11] Malkin made an attempt to generalize the reduction principle to systems (1, 1)
for which the p1(T) and @e (T ) are any arbitrary and bounded functions of ¢ for
? 20, This generalization is based on a theorem published in {12], In the proof of
that theorem, Malkin has made an important error, It is asserted that with respect to

the series z; = zj (xy, ... , Tp; 1), satisfying Equations
Ozjl "_‘ e (QIMZ[” v o -
—t 2 (Py®r+ o+ Pty AS).J;.,,— T T
¢ o] s
the series v; = v; (7, ..., ¥,), determined by the system
" , 01;]. )
z(aslx1+"'+a3nxn+)s)b;" == V] (’Tlv"'wl‘”; vly"‘)pp‘) (]:1)"'1p)
s=1 s

are intensifying if ¥y and Vy are obtained from A, and Z; by replacing the coef-
ficients of their expansions by the largest moduli, and if the coefficients « . for <8,
represent the superior bounds of the moduli pg,. Allthe Qg =, This assertion is
wrong . It is easy to convince oneself that the series v = ¢2® + 2% -+ ..., satisfying

Equation v
et or (T2t =2

2 a2
is not stronger for the series z = a,a® + az® + ..., determined from Equation

0z

Grl—x— ) =2+ xz
since Qg =—3%; Ca=4%, but 03 = —é— and @z =% . Thus the theorem on which is
based the proof of the first basic theorem of the stability in critical cases is not proved,
Consequently, the first basic theorem is not proved either ,

In the proof of the deduction principle, Malkin used, without justification, the trans-
formation given in [3]. The convergence of the series z; = zj (y, ... ,255 7) is Not
proved by Malkin, whereas the series z;= z; (2, ... , #p), appearing in [3] are abso-
lutely convergent. Realizing the logical insufficiency of the discussions in the proof
of this theorem, Malkin makes another attempt to prove the given theorem in [6], by
using transformations different from those used by him in [11], The proof, given in
[6] contains an important error pointed out by Erugin [13]. The transformation

g, =rNg, r= Yy e

can be used under the condition that the new variables §, vary in the interval + @,
Malkin considers ,gs , and ,xs , sufficiently small ,

If the reduction principle is understood as it is formulated in [3], then the results
concerning the systems (1, 1) with constant and periodic coefficients, can be easily gene-
ralized to systems of the same form having coefficients continuous and bounded in ¢,

Let us assume that in the system (1. 1) the coefficients D43 = 0, @5 = 0 for i>J
and £>8. This assumption does not decrease the generality of the problem [14]. Let
the coefficients D,y and gg satisfy the condition

[exp tg <p“. — i /csqss> dt] § exp [— i (pl-]. _ g /fsfjss> dtj! dt I'< M (\)

0 s=1 0 0

(ki eve 4k, <N)

s=1
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Then by means of the transformation

N
I T D N T C/ PR )
k=1
where uj”‘) (Y1r -+ Yy, 1) are forms of the Kth order in ¥y, -.- » ¥,,, and by a cor-

responding choice of those forms, the system (1, 1) can be transformed in a form in which
the functions playing the role of .’dj"” T Y, 1), become identically equal to zero
for all A= /&, when & is arbitrarily large . The coefficients of the forms «;*' under
the conditions (A} , are bounded and continuous, Assuming that the system (1, 1) satis~
fies that condition, we write

N
Yy = ns + 2 "‘s(hmkn’)(zl’ T ZP; 1) ylkl BRI -'/-mk”1 (K =k SRR + km)
K >t

where the us“"""""n) are linear forms of Zy,..., zp .

The linear forms u, %" (2, ,... ,2p; #) can be determined such that the functions,
playing the role of functions P,%t-*n)  for all k, ... kn,, satisfying the condition
By b .o 4 Eny KN.  vanish in the wansformed system , Similarly, the coefficients of
the forms u % -¥m) are bounded and continuous ,

If the system of equations (1, 1) satisfying the condition (A) , has coefficients D 4
such that the system of equations

2= putiy 2’3 = Pa2y + Paalas - Zp == PpifL -t - o+ Ppplp
has a Liapunov function /5 of a quadratic form and satisfying the asymptotic stability
theorem, then the Liapunov or Chetaev function for the complete system can be deter-

mined in the form
V=7 - Yny ) Ve lay oy Zpi £)

where [} is the Liapunov or Chetaev function for the shortened system ,

It is necessary to note that the determination of the stability and instability by means
of the N first forms of the right-hand sides of the "shortened” system, independently
from the forms of higher order, as it was assumed by Malkin in [6}, is more general
than the method proposed in [3] which derives from the criteria of stability and instabi-
lity as determined by functions of Liapunov and Chetaev, The determination of Malkin
considers, in particular, the case of the nonasymptotic stability , However, Malkin does
not clarify whether systems of equations having such property of motions for g4 = 0
can exist or not, It can be asserted that for steady state and periodic motions, the sys-
tems of equations corresponding to the perturbed motion do not have such a property at
least for Ny =2,

The example of Persidskii, presented in [6], refers to equations whose right-hand sides
have linear terms ,

Note 8, 2, As was mentioned before, one can find in [3] the transformation of the
systemn of equations (2, 21) into equations with constant coefficents up to forms of any
arbitrary high order, when there are 7 roots equal to zero, with /7 groups of solutions,
and when all the A, are irrational and £ A, #0, In [6], Malkin touches also this
problem, considering A as being irrational, In [6] the reduction is done without
decreasing the order of the system ,
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